
fathat.org

Introduction to
Basic computer science
for developers

fathat.org

What we will learn

Binary and hexadecimal notations

Ascii and utf-8

Logic gates and boolean algebra

fathat.org

binary
In digital electronics and mathematics, binary is represented by a sequence of ("1"s and "0"s). It’s a
base-2 number system as opposed to decimal which is base-10.

Computers use binary numbers because designing electronic circuits is easier when dealing with simple
switches represented by two states, i.e. binary states: ("On" and "Off"), ("True" and "False").

Computers use binary to represent all data transported at the lowest levels. A 64 bit computer has a 64 bit
data Bus that will transport 64 bits (binary digits) at once.

In the decimal system, there are 1s, 10s, 100s, … positions (powers of 10 starting with 0)
In the binary system, there are 1s, 2s, 4s, 8s, … positions (powers of 2 starting with 0)

Binary Decimal equivalent

0 → 0
1 → 1
10 → 2
11 → 3
100 → 4

fathat.org

Binary: Converting to decimal

Let’s convert 110011 to decimal:

1 1 0 0 1 1
32s digit 16s digit 8s digit 4s digit 2s digit 1s digit

1 x 32 1 x 16 0 x 8 0 x 4 1 x 2 1 x 1

32 16 0 0 2 1 Total: 51

Thus, 11011 in binary is equivalent to 51 in decimal.

(right-most bit)(left-most bit)

fathat.org

Binary: arithmetic - How two binary numbers are added.

How do we add binary numbers? (similar to decimal numbers)

11011
 10+

11111

1+1=2, so the extra 1 carries over to next digit.

fathat.org

Binary: arithmetic - Negative numbers

We saw how positive numbers are represented in binary notation, but how to represent a negative binary number (-) ?
A negative binary number is represented by an extra bit or sign bit. There are numerous methods that we can use, two of
which are described below:

1. Signed Magnitude Method - using 5 bits register. The representation of -5 to +5 will be as follows:

In this method, number is divided into two parts: Sign bit and Magnitude. If the number is positive then sign bit will
be 0 and if negative 1. Magnitude is represented with the binary form of the number to be represented.

fathat.org

Binary: arithmetic - Negative numbers

2. 1’s Complement Method - using 5 bits register. The representation of -5 and +5 will be as follows:

+5 is represented as it is represented in sign magnitude method. -5 is represented using the following steps:

(i) +5 = 0 0101

(ii) Take 1’s complement of 0 0101 and that is 1 1010. MSB is 1 which indicates that number is negative.

MSB is always 1 in case of negative numbers.

fathat.org

Data: measuring

Bit - binary digit (0 or 1) - “Smallest unit of data”

Byte - 8 bits

Kilobyte (KB) - 1000 bytes - Kibibyte (KiB) - 1024 bytes

Megabit (Mb) - 10002 bits

Megabyte (MB) - 106 bytes - Mebibyte (MiB) - 10243 bytes

Gigabytes (GB) - 109 bytes - Gibibyte (GiB) - 10246 bytes

Terabytes (TB) - 1012 bytes

Petabytes (PB) - 1015 bytes

fathat.org

Data: transfer rates - speed of sending data

Average number of bits or bytes transmitted (over a wire or wireless) in digital telecommunication.

Usually described by ISPs (Internet Service Providers) using either Megabits per second or Megabytes per
second (Mbps or MB/s). It’s important to make the distinction, otherwise you may well end up with a slower
speed than anticipated.

fathat.org

Hexadecimal notation: Introduction

Binary in long sequences is difficult and cumbersome to read.

For software developers using 0s and 1s to represent our data would be extremely time consuming and
tedious and prone to frequent errors and misrepresentations.

Developers use the Hexadecimal notation as a more compact form of encoding binary. Hexadecimal is a
base 16 notation using numbers 0-9 and letters A-F.

However, computers cannot directly use hexadecimal notation to perform instructions. Hexadecimal
notation is translated into binary before being processed. It is used as a convenience notation.

fathat.org

Below is a comparison between binary and hexadecimal notation:

Every 4 bits → 1 hexadecimal digit (1 - 9, and A - F)

Hexadecimal notation

000111110000011110001010

Hexadecimal (6 digits):

Binary (24 digits):

1 F 0 7 8 A

fathat.org

Hexadecimal notation

Convert 1F048A to binary:

000111110000011110001010

 1 F 0 7 8 A

fathat.org

Hexadecimal notation: Common Uses

Amongst the uses of hexadecimal by Computer Scientist and software developers are:

1. Representing Colors - #000000 = ‘black’ and #ffffff = ‘white’
2. Shorthand for Memory Locations - two hexadecimal digits for every byte as opposed to eight digits in

binary.
3. Security hashes and secret keys
4. IPv6 Addresses
5. Represent Mac (Machine Access Codes)
6. Representing the Braille alphabet - Braille is a symbol language for the visually impaired.

fathat.org

Ascii notation

We saw how numbers are represented in binary. How do we represent text, for example, text in our emails?

ASCII (American Standard Code for Information) is one solution: Ascii uses a byte (8-bits) for each character
represented.

There are only 128 characters (since we have 8 digits, 28 = 127).

H e l l o , R i c h a r d !
72 101 108 108 111 44 32 82 105 99 104 97 114 100 33

fathat.org

Ascii notation
The 128 Ascii characters can represent only the English alphabet.

fathat.org

unıcode and utf-8
Ever wondered how computers manage to deal with all languages on websites, apps, keyboards, and
output to printers etc. etc. Wonder no more, Unicode to the rescue.

ASCII can only support 128 characters for the English alphabet, computers needed a different solution for
the many other languages out there, together using thousands of different characters, and then there are
emojis! It’s a complex alphabet soup!.

Ü ڃ ಚ 😁

How do we represent them? We use Unicode and UTF-8

Unicode: Assigns a code for every character in the world.
UTF-8: Represents a unicode character in binary.

fathat.org

Unicode: defines code points for every character in the world

CHARACTER CODE POINT
A U+0041
a U+0061
0 U+0030
9 U+0039
! U+0021
Ü U+00DC

ڃ U+0683
ಚ U+0C9A
😁 U+1F601

fathat.org

Utf-8: defines binary representation of every unicode codepoint

CHARACTER CODE POINT UTF-8 BINARY ENCODING

A U+0041 01000001
a U+0061 01100001
0 U+0030 00110000
9 U+0039 00111001
! U+0021 00100001

Ü U+00DC 11000011 10011100

ڃ U+0683 11011010 10000011

𠜎 U+2070E 11110000 10100000 10011100
10001110

😁 U+1F601 11110000 10011111 10011000
10000001

fathat.org

key advantages of utf-8

● Covers all languages:

Up-to 4 bytes allows the representation of millions of characters

● Backward-compatible with ASCII:

Representation of “Hello, Richard!” is the same in ASCII and UTF-8

● Spatial efficiency:

More frequent characters take less space

Unicode is probably one of the most useful concepts you can learn in software development, so go ahead

and learn as much about it as you can.

Click the link for a great in-depth introduction to Unicode - A great introduction to Unicode

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

fathat.org

Summary: How humans and computers Represent numbers and text

What humans can understand What computers can understand

48300 1011110010101100
 B C A C

(Binary)

(Hex)

FETHİYE
0100011001000101010101000100100011000100101100000101100101000101

46455448c4b05945
UTF-8
Hex

(Base-10)

(Latin
alphabet)

fathat.org

Base-64
encoding

1010010111010101….

(Binary data)
Base-64
decoding

1010010111010101….

(Binary data)
eyJzdWIiOiIxMjM0NT….

Base-64 is a group of algorithms to represent raw binary data as textual data, for sending this
data in a channel that only supports text-based data.
All data is encoded into 64 characters.

Channel sending text-based data
(eg. HTTP headers, URL params)

Base-64: encoding and decoding

fathat.org

Logic gates and boolean Algebra
Logic gates are basically switches that derive a logical state/output depending on their inputs. The state is determined by
a set of logical operations based on Boolean Algebra.

In computer science Truth Tables are used to represent logical expressions of True and False states using a set of Boolean
Operators.

The most common Boolean operators are AND, OR and NOT. Each operator has a standard symbol that can be
used when drawing logic gate circuits.

fathat.org

not gate

A NOT A

false true

true false

Truth table

IF A is not true THEN
 Do something…
END

Example:
IF speed is higher than 90 THEN
 Reduce speed
END

fathat.org

And gate

A B A AND B

false false false

false true false

true false false

true true true

Truth table

IF A is true AND B is true THEN
 Do something…
END

Example:
IF it is raining AND it is cold THEN
 Take a coat
END

fathat.org

Or gate

A B A OR B

false false false

false true true

true false true

true true true

Truth table

IF A is true OR B is true THEN
 Do something…
END

Example:
IF it is raining OR it is too sunny THEN
 Take an umbrella
END

fathat.org

Nand gate

A B A AND B

0 / false 0 / false 1

0 / false 1 1

1 0 / false 1

1 1 0 / false

Truth table

fathat.org

NoR gate

A B A NOR B

false false true

false true false

true false false

true true false

Truth table

fathat.org

Combining operations

A

B

C

A B C (NOT(A) AND B) OR NOT(C)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

